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Dimensionless numbers and the assembly rules for life

histories

ERIC L. CHARNOYV anxp DAVID BERRIGAN
Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A.

SUMMARY

This paper reviews recent efforts to use certain dimensionless numbers (DLNs) to classify life histories in
plants and animals. These DLNs summarize the relation between growth, mortality and maturation, and
several groups of animals show interesting patterns with respect to their numeric values. Finally we focus
on one DLN, the product of the age of maturity and the adult instantaneous mortality, to show how
evolutionary life history theory may be used to predict the value of the DLN, which differs greatly

between major groups of animals.

1. INTRODUCTION

This paper is about the use of dimensionless numbers
(DLNs) to characterize and classify life histories in
animals and plants. DLNs are widely used in dy-
namical and mechanical problems where the be-
haviour of the system of interest often depends on the
ratio or product of parameters and not the values of
each alone. A simple example from theoretical biology
is the equation for change in gene frequencies for a
single diallelic locus under natural selection. Under the
usual assumptions, the dynamics are entirely given by
the relative fitnesses of the three genotypes. While
actual Darwinian fitness is the product of survival and
fertility (and has units of ‘numbers’), relative fitness is
constructed by dividing the three genotype fitnesses by
the fitness of the heterozygote (and is dimensionless) ;
thus, we get, for the genotypes AA:Aa:aa, the relative
fitnesses 1-s:1:1-¢

Mathematical functions between dimensional vari-
ables can always be rewritten in dimensionless forms by
using formal techniques from so-called ‘dimensional
analysis’ (see, for example, Giordano et al. (1987);
Stephens (1991), for applications to behavioural
ecology; or Stahl (1962) and Calder (1984) for body
size and physiology). Dimensionless variables have a
number of useful properties; for example, (i) they
reduce the number of variables in the problem (e.g.
three fitnesses reduced to two numbers, s and ¢; (ii)
they express the relation between variables; (iii) the
DLNs, being unit-free, have magnitudes that have
absolute meaning from case to case (s= 0.2, t=0.5
means the same thing with respect to genotype
dynamics, independent of the actual survival times
fertility values).

DLNs have sometimes been used to characterize life
histories. Five examples will show this: (i) sex ratio
(proportion males) in a brood (Charnov 1982); (ii)
reproductive effort (Williams 1966) loosely defined as
the proportion of available resources devoted to
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reproduction, as opposed to growth or maintenance;
(iii) scaling allometry of life-history variables with
body size (Harvey et al. 1989; Calder 1984; Millar &
Zammuto 1983), the exponents are DLNs (indeed,
deviations from log-scaling relations are also DLNs;
Harvey et al. 1989); (iv) the dimensionless form of age-
of-sex-change in a sequential hermaphrodite (Charnov
& Bull 1989); and finally (v) the total force of
mortality over some life-history phase, such as birth to
adulthood (Ricklefs 1969; Charnov 1991). In each of
these cases, empiricists have noted some general
patterns (e.g. mortality rates scale with the —0.25
power of body size in mammals, or the first sex is
always more abundant among the breeders under sex
change) and life-history theorists have attempted
general explanations as to why natural selection in the
face of trade-offs has produced the patterns.

This paper reviews recent efforts to apply some other
DLNSs to characterize animal (and plant) life histories,
in particular some numbers developed in the context of
fishery science, which summarize relations between
growth, mortality, and maturation (Beverton & Holt
1959). We review the Beverton—Holt patterns for fish,
and extend the results to sea urchins, shrimp, snakes,
and lizards. In the process we propose a new DLN
related to theirs (Charnov & Berrigan 1990), and use
this one to look additionally at birds and mammals.
Finally, we show how evolutionary life-history theory
may be used to answer why some of the patterns exist.
Our claim is that the ‘aggregate’ characterization of
life histories through these DLNs leads us to see new
patterns in the data and to develop evolutionary life-
history theory in novel ways.

2. LIFE HISTORIES WITH DETERMINATE
AND INDETERMINATE GROWTH

Birds, mammals, insects (and a few other animals)
have determinate growth where adult size does not
alter. By contrast most other animals have inde-
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Figure 1. A life history under indeterminate growth. Growth
in length (/) follows the Bertalanffy equation, [ =
[,(1—e™®%), mass follows length to a power near 3.
Maturation is at age o, length 7, while [ is the asymptotic
length; thus [ /[ is the relative size at maturity. The adult
instantaneous mortality rate is M. In ‘practice M is a
weighted average over the adult lifespan, weighted towards
the younger adults (see Beverton (1963) for the specific
statistic).

terminate growth where body size continues to increase
after maturation. Figure 1 shows a typical life history.
Body length (/) increases with age and is often usefully
described by the Bertalanfly equation; in its simplest
form the growth equation has two parameters, [/, the
asymptotic length, and K, the growth coefficient.
Maturation is at age o, corresponding to size /,. In this
simple example (figure 1) the adult instantaneous
mortality rate (M) is shown as a constant, resulting in
exponential decline for the cohort reaching the age of
maturity. In actual practice M may increase over the
adult life time; here we will be led to define an average
M (Beverton 1963). K and M both have dimensions of
1/time, [, and /, have dimensions of length, and « has
the dimension of time. From these we can construct
three DLNs:

l,/!, =relative size at maturity (1)

o M =relation between maturation and adult
mortality (ratio of age at maturity (a) to the
average adult lifespan (1/M) (Charnov &
Berrigan 1990)) (2)

K/M = relation between relative growth (K) and
mortality (M). (3)
The number K-« is related to [ /I, through the

Bertalanfty equation of figure 1; or

b jewe 4)

[ce]

o~

Notice also that equation (4) implies that any two of
DLNs (L,/l.,, K/M or M-a) suffice to determine the
third.

The suggestion that we view life histories under
indeterminate growth in terms of the two DLNs K/ M
and [/l goes back 30 years and is owing to Beverton
& Holt (1959) and Beverton (1963), who developed
the notion in relation to fish; they were motivated by
the fact that in fisheries the steady-state equation for
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annual catch per recruit (a dimensionless equation)
could be written in a form that included only three’
parameters, all of which were DLNs, two of which were
K/Mand [,/l,. (Our use of M here differs slightly from
theirs but the point here is simply to acknowledge their
priority.) They were thus led to ask if various fish
groups showed any patterns in the values of K/M
and/or [, /[.

Determinate growers, like birds, mammals, and
insects have [, /[ near 1; the - M number is useful to
characterize them. There are, however, additional
possibilities. With a clutch size per unit time per
mother of b, independent of age, and survival to
adulthood (age o) written as S, the average number of
offspring produced over an individual’s life is 5.5/ M.
Since b has units of 1/time, this equation is dimension-
less and with a 1:1 secondary sex ratio will equal 2 in
a non-growing population (Charnov 1986; Sutherland
et al. 1986). We can rewrite it as (a*b)/(a- M) S = 2,
which give a relation between three DLNs (S, a5,
o+ M) imposed by the condition of population stability.
This paper will only deal with the & M number for the
determinate growers. Charnov (1991) discusses the
other two for female mammals.

This paper will review some of the empirical patterns
relating to the above DLNs, and will develop evolu-
tionary life-history theory about the a-A number.
We begin with the classical Beverton—Holt patterns for
indeterminate growers.

3. BEVERTON-HOLT: FISH

Thirty years ago Beverton & Holt (1959) and
Beverton (1963) pioneered the comparative study of
fish life histories by showing that within limited
taxonomic boundaries (such as within the cod, salmon
or herring family), there existed certain across species
(or populations within a species) patterns in growth
and mortality. These patterns, reviewed in Cushing
(1968) and Pauly (1980) are two in number. (A third
pattern, not developed here, is discussed in Charnov &
Berrigan (1991).) Within each taxon the adult in-
stantaneous mortality rate, M, and the Bertalanffy
growth coefficient, K, are positively related to each
other so that the ratio K: M tends to be relatively
constant; and the K: M ratio differs between taxa. The
second pattern is that the length at maturity () is
positively related to the Bertalanfly asymptotic length
({,) so that the relative length at maturity, /,/I_, tends
to be a constant value within a taxon. Of course, as
shown with equation (4), these two imply the constancy
of & M within a taxon. Figure 2 shows an example of
the data, here for the Clupeomorph fishes of the
families Clupeidae and Engraulidae. Figure 24 shows a
plot of 1/7, .. versus K, where 7, is the age of the
oldest individual observed in a large sample. Beverton
(1963) showed that, at least for large samples, many
fish species or populations have maximum age (7;..)
that is highly correlated with the adult mortality rate
M, so that M = g/ T, .. with g ~ 6. In a much larger
and taxonomically diverse sample of animal species,
Hoenig (1983) confirmed Beverton’s relation, with a
similar g value. Applied to figure 2, this relation has
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Figure 2. (a) Growth coeflicient, K, against the inverse of the maximum lifespan (1/7,,
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species of fish in the families Engraulidae and Clupeidae. Because the adult instantaneous mortality rate, M, is
proportional to 1/7,. (or M ~6/T, ), we have that M ~ 1.5 K for these fish. Figure redrawn from Beverton
(1963). (b) The adult instantaneous mortality rate, M, is inversely proportional to the age of maturity, «, for fish
in the families Clupeidae and Engraulidae, or In M = C—In «. Data from Beverton (1963) and only includes
populations with direct estimates of M (which is why there are fewer data points here compared with figure 2a).
(y = 0.69—1.04x; r = —0.84; n = 26; s.t.d. errors; slope = 0.14; intercept = 0.17.) Time in years.

M ~ 1.5-K for the Clupeomorpha. Figure 24 shows
that M and a are inversely proportional, making
M-a ~e*® =92 These two make [/l ~0.75, a
number confirmed by the length data. While Beverton
(1963) discusses some between-species differences in
these numbers, the overall pattern is near constancy.

4. OTHER INDETERMINATE GROWERS

K/M, /], and a*M may also be approximately
constant within other taxa showing indeterminate
growth. Ebert (1975) showed K/M near 1 in a sample
of over a dozen species of sea urchin (r = 0.91, sample
size = 15, line through the origin). He provided no
data on oM or [/l . Charnov (1979, 1989) showed
all the Beverton—Holt patterns to hold within the
shrimp family Pandalidae in a sample that included 27
populations of five species and spanned the Northern
latitudes from California to the subarctic. The data
have K/M ~0.37,1,/!, ~0.56, and a* M ~ 2.2.

The above indeterminate growers are aquatic
ectotherms. Shine & Charnov (1991) asked if the
Beverton—Holt patterns also held for terrestrial ecto-
therms. They assembled data for 16 species of snakes
and 20 species of lizards. /,/[, is near a constant for
both snakes (= 0.64) and lizards (~ 0.73). M and a
are also inversely proportional in these groups, with
a-M ~ 1.3 for lizards and a bit higher (=~ 1.5) for
snakes.

It appears that the Beverton—Holt fish patterns (the
approximate constancy of - M, [, /] and K/M ‘within
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a kind-of-animal’) hold for several other groups with
indeterminate growth; the life-history rules are about the
allowed values for certain dimensionless numbers. Now we
turn to the determinate growers, birds and mammals.

5. - M IN BIRDS, MAMMALS (AND THE
OTHERS)

Bird and mammals both have determinate growth
but with one key difference. Mammals begin re-
producing at near 909, their adult mass while birds
with altricial young usually reach their adult mass near
the time of independence from the parents. Most birds
reach adult size long before o while mammals reach it
near o.

They also differ in the o M number. Figure 3 shows
a plot of 1/M (average adult lifespan) versus a for 66
bird species and 26 mammal species; the birds have
adult lifetimes about double a mammal with the same
age of maturity (recall that 1/M divided by a is
1/(a-M)). a-M is ~0.70 for mammals, =~ 0.40 for
birds. A plot of In M versus In o shows a slope of —1 for
the mammals, but a somewhat steeper slope (—1.2) for
the birds; thus 1/M is proportional to o in mammals
but only approximately so for the birds. Birds with
higher o® have slightly higher 1/M?® than expected by
strict proportionality (table 1).

Of course, the other way to summarize these
relations is to plot the average length of the adult
lifespan (expectation of further life at age o) (=~ 1/M)
versus the age at maturity (o). We summarize these
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Figure 3. Average female adult lifespan (1/M) plotted
against age of maturity («) for 26 mammal species (data from
Millar & Zammuto (1983) and Promislow & Harvey (1990))
and 66 bird species (data from many sources). Statistics as
follows: mammals: y =0.274+1.25x (r=0.95, n=26);
birds; y = —1.32+2.75x (r = 0.91, n = 66). For a given «,
birds have adult lifespans near double a comparable
mammal. See also figure 4.

Table 1. A summary of a- M for all the groups

group aM

birds ~ 0.40
mammals ~ (.70
snakes and lizards ~ 1.40
fish and shrimp ~ 2.00

(&}

] | | J | ] |

Average female adult lifespan

1 2 3 4 5 6 7
Female age of maturity

Figure 4. Average adult lifespan (1/M) versus o for all
groups. For contrast I treat the birds as having a proportional
relation (see text for qualifications). I also pool lizards and
snakes. Shrimp data are for both sexes. Number on each line
refers to estimated slope, the number 1/(a-M). (After
Charnov & Berrigan 1990.)

data in figure 4. Notice that birds have adult lifetimes,
for a given age of maturity, about 2 x mammals, 3 X
snakes and lizards, and 5 x fish and shrimp. Notice
also that figure 4 says nothing about the actual values
of @ or M; indeed, there are fish (Beverton 1963;
Beverton & Holt 1959) with ages of maturation of
10-20 years, the same magnitude as elephants and well
beyond most birds. It is the relation between o and M
which differs between groups; upon reaching the
maturation age of 10 years, a bird has an average of
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about 25 years to live, a fish has 5 years. These
differences are so striking that they demand expla-
nation in terms of some fundamental differences
between the groups (Charnov & Berrigan 1990).

6. WHAT SETS a-M?

The above heading could well expand to include
K/M and [ /I, but this paper will only deal with
oM. Charnov & Berrigan (1991) have begun a life-
history evolution theory aimed at predicting all three
DLNs under indeterminate growth. Our aims are more
modest here (oM alone) and we ignore the added
complications of indeterminate growth.

We believe that the answer to why a*M takes on
particular values lies in how natural selection acts to set
the maturation time itself. In what follows we will
construct a theory for evolution of the age of maturity
and require as its output the o M number. The broad
brush approach to the theory will be in three phases:
first, a general evolutionary theory for o«; second, a
phenomenological approach to predicting the oM
number; and finally an ‘individual growth or pro-
ductivity’ approach specifically designed for deter-
minate growers like mammals.

The model

Consider a newborn female and define I, as the
probability she is alive at age x, and &, as her birth rate,
in daughters, at age x. Her lifetime production of
daughters is:

R, = J 1,5, dx. (5)

a

We can rewrite R, as follows:

f Lb,dx
B =1, | ©)

The term in brackets is the average number of
daughters born over a female’s adult lifespan, the
‘reproductive value’ (Fisher 1930) of an age « (a just
mature) female, and will therefore be labelled V(a).
Now, write 1, as e**. R can now be written as:

R, =€ V(). (7)

For R, to be a valid fitness measure, the population
must not be growing, or R, & 1. This is a population
dynamic side condition on an optimization-of-R,
problem (Charnov 1986) and is discussed in great
detail in Charnov (1990). We wish to maximize R, with
respect to a, which is the same as maximizing:

InR,=InV(a)—¢(a).
In equilibrium (at the Ess @, Maynard Smith (1982)),
we require
Oln V(a)  0¢(a)
o Oa ®)

Now, suppose that Z(x) is the instantaneous mortality
rate at age x; in general Z(x) will decrease with x (and
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for many species will reach some low and near constant
value before maturation; it may go up again late in
life). We may thus write

dg ()
Jo

=Z(a).

But if mortality does not change much after maturation
Z(a) is the adult mortality rate, called M earlier in this
paper. The Ess equation (8) may now be written as

O0ln V(a)

=M. (9)

This equation for the Ess age of maturity is the first
step towards getting a value for the o M number. The
key apparently lies in the V(a) function; notice that
equation (9) does not require that we know the actual
V(a) function, only its proportional change with «, its
shape (Charnov 1990). For example, suppose that we
guess that V(a) oc a%; V(a) is a power function in «
with exponent (a DLN!) 4. In V(a) = constant+d In «a,
and

dln V(a)

PP d/e.

If we put this into equation (9), a rather interesting
thing happens; the Ess is where a-M =d. All life
histories where V(a) can be treated as a power function
in o have the property that ‘a- M = the exponent’ at
the Ess. Here is a theory for the oM number; it
suggests that fish have quite high exponents and that
birds have quite small ones. Better still, we know the
values of d (at least approximately) to be searched for.
This is a phenomenological model as nothing really
informs us as to what determines the d coefficient, only
that whatever it is is similar within fish, birds, etc. It
seems clear that to go further we must tie d (or
something like it) back to general models of growth, or
other developmental processes.

7. «-M IN MAMMALS

In this section we model V(a) as a function of
individual productivity; the approach makes two new
assumptions, in addition to those leading to equation
(9). These are that growth depends on body size (W)
and can be described as dW/dT = AW® (equation 10),
and that growth is determinate and ceases at re-
productive maturity when energy is simply diverted
from growth to offspring production. The derivation in
Appendix 1 shows that these assumptions and equation
(9) lead to the prediction that o M=
(¢/1—¢) (1—8"°) (equation 11), where ¢ is the
exponent describing the size dependence of energy
acquisition for growth and reproduction (equation
10) and ¢ is the offspring’s relative size at inde-
pendence, its mass at independence divided by its
mother’s mass. Direct measurements of animal pro-
duction rates put ¢ near 0.75 within many taxa
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(Lavigne 1982). Note that if ¢ = 0.75, equation (11)
reduces to 3(1—0°%) (equation 12). The relative size
at independence () is the point at which an animal
moves from a potential growth trajectory determined
by its primary care giver to one determined by its own
size. Thus we are assuming that a mammal grows
during two periods; one from birth to independence
where its mother controls its growth rate and a second
from independence to maturity, where its own size
determines its growth rate. The size at maturity is
assumed to be the final adult size and this size in turn
determines the offspring production rate through
equation (10). The age at maturity («) is the interval
between independence (estimated here as weaning)
and first reproduction.

Equation (12) is almost linear in & for 0.2 < § < 0.6,
a range that includes most mammals (Millar 1977).
This means that to predict the average oM, it is
sufficient to substitute the average & (=4§) for
mammals. Millar (1977) estimated & (weaning mass/
adult female mass) for 100 species, mostly < 1kg in
mass, and got § = 0.37. We have an additional sample
of 23 species (Appendix 2), mostly of body size > 1 kg
and get § = 0.33. These numbers inserted into equation
(12) predict a-M to be = 0.7, right at the observed
average value.

We have also tested the prediction that a-M =
3(1—48%%) by comparing the values of - M with the
ratio of mass at weaning to the average adult female
mass () for 23 species of mammals (figure 5; data
sources and species listed in Appendix 2). The data
strongly support the predicted relation. Notice that the
r value of the linear regression between observed and
predicted values of a- M increases from 0.71 to 0.93
when we fit averages (figure 55) over even intervals of
¢ rather than all 23 points (figure 54). We cannot
distinguish between a linear regression of o * M versus
(r=-—0.67, p<0.001) and this slightly curvilinear
relation (r = 0.71, p < 0.001). In these tests we assume
that ¢ = 0.75. We also used nonlinear regression to fit
the one parameter model for ¢ (equation 11). The
solution from fitting all 23 points, plus or minus one
standard error, gives a value of ¢=0.74+0.03
(r=-0.71, p <0.001) and the solution for the five
average values gives ¢=0.75+0.04 (r=-0.93,
p < 0.03). Because the production relation of equation
(10) appears to be an important component of
mammalian life histories, it is particularly significant
that at evolutionary equilibrium, the 0.75 exponent
appears in the relation between - M and J (equation
12). Our analysis (figure 5) is the first indirect
determination of this exponent and gives virtually the
same answer as direct measurements of individual or
offspring production (Lavigne 1982).

The ecological correlates of differences in o - M and
¢ within the mammals are not obvious. The three
largest values of ¢ in this study are those of the impala,
wildebeest, and zebra, and the three lowest those of the
rabbit, otter, and boar; squirrels and elephants have
similar and intermediate values of ¢ and a-A. Body
size is also not responsible for the observed correlation
between oM and ¢ because a-M is not correlated
with adult mass (r < 0.001, p> 0.05) or mass at
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Figure 5. We plot the value of a* M versus 0 for females of 23
mammal species (see Appendix 2). o is the age at first
reproduction adjusted for the parental care period. M is the
average adult instantaneous mortality rate (Beverton 1963)
and 8 is the ratio of mass at weaning to adult female mass. (a)
We show the observed values of - M (@) and the predicted
values (equation 12) (—). We tested the fit with a linear
regression of observed against predicted values (r=0.71,
p < 0.001). (6) Here we averaged the values of d and - M over
the intervals 8 = 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, and
> 0.5. The error bars are one standard error, the numbers are
the sample size, and the line is the predicted value (r = 0.93,
p < 0.03). The statistical tests are one-tailed.

weaning (r < 0.003, p > 0.05). Considering the un-
certainties involved in field estimates of life-table
parameters and the estimation of & by weaning mass,
the observed fit of the data to the predicted line is
encouraging.

8. DISCUSSION AND CONCLUSION

Perhaps the most appealing aspect of a dimensionless
approach to life histories is its focus on general patterns,
in terms of relations between vital rates (growth,
mortality, maturity, fecundity); and the data do show
patterns (even for some plant groups, see, for example,
Loehle (1988) and figure 2 therein), begging for
explanation in terms of evolutionary life-history theory
(which itself must be made dimensionless). The
exploration of these patterns, in both theory and data,
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has really just begun. Life-history theory is almost
always based on the assumption of fitness maximization
in the face of trade-offs (= constraints). If the fitness
function (e.g. R,) does not differ between species, then
species differ in life history only because they differ in
trade-offs. However, similarities of DLNs (within a
taxon) strongly suggest similarities in the trade-off
functions. Indeed, several modelling efforts (Charnov
1990, 1991; Charnov & Berrigan 1991) say that
similarities of the DLNs point to similarities of the
shapes of the trade-offs (e.g. a*M = 1 implies d & 1,
under the assumption V(a) oc a?). Another way to say
this is that the various DLNs show conservation principles
(i.e. they are fairly invariant within a taxon) and that
the existence of such conserved quantities points to
deeper underlying symmetries (Watson 1990) in the
transitions allowed for trade-offs; the allowed trade-
offs may differ in height but not in shape.

We would like to conclude this paper with a brief
and final illustration of the above points, chosen from
the theory of sex change. Sex change exists in two
forms: protandry, male first and protogyny, female
first. The usual evolutionary theory aims to predict the
order and time of sex change (Charnov 1982). The
dimensionless version of sex-change theory aims to
predict the breeding sex ratio. Under quite broad
conditions, the theory says that the first sex will be
more abundant among the breeders, and that the
extent of bias depends upon just how fast (= shape)
each sex gains reproductive ability with age or size
(Charnov 1982; Charnov & Bull 1989). Indeed, the
first sex is almost always more abundant, and the skew
is greater under protogyny (Charnov & Bull 1989).
The dimensionless view of sex change provides us with
some broad empirical rules, and some general theor-
etical reasons (hypotheses) as to why the data patterns
exist.

We have benefited greatly from discussions with Raymond
Beverton, Jan Kozlowski, Robert Ricklefs, Paul Harvey,
Sean Nee, Linda Partridge and Dave Stephens. We thank
K. Ralls, E.Rickart and T.Nagy for help with data
collection.
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APPENDIX 1 «-M FOR MAMMALS

The growth and production model developed here is
strictly applicable only to determinate growers like female
mammals who cease growing at age o. The argument is from
Kozlowski & Wiegert (1986, 1987), and Charnov (1990,
1991).

Let W stand for body mass; then a great many groups
of animals show the following growth relation (before
maturation but after independence from parental feeding):

dw

= aw, (1)

dT
where ¢ is near 0.75 and 4 varies between taxonomic groups;
see Lavigne (1982) and review by Reiss (1989). Set ¢ = 0.75;
then-we have

W () d W 3
= 4T, &)
- W0A75 0

where W, is the size at the end of parental feeding,
called time zero. The change of variable ¥ = W%% leads
o (dY =[0.25]/[W°™] dW) and the general solution of
equation (2):

- Ao

W(a)ozs_ Wg.% — _4_

Now, write W, as 6 W(a); we have finally

0.25-4

W(a) 0.25 o l — 60‘25 .

a (0 is of course a DLN).  (3)
Notice that a in equation (3) is measured from some time
called zero when we assign the individual some starting size
W, which is taken to be & proportion of the adult size.

Equation (3) is simply a growth relation. Kozlowski &
Wiegert (1986, 1987) noted that equation (1) is also an
offspring production relation if offspring are simply the result
of shifting resources, primarily energy, from self-growth to
offspring-production. Let & = offspring production (per
female) per unit time, then for a determinate grower V(a) =
b/ M (see equation (7) in text for V(et)). Provided M does not
increase with a delay in maturation (the mortality rate
reaches its minimum value prior to age o) then V(e) oc b. But
if bocdW/dT oc AW®™, then V(a)oc AW*™ In V(x) =
Constant+0.75 log W and

On Vo) _O075dW_ 75 gppr-oms
o W dT

From equation (9) in the text we have the Ess result

Oln V(e)
o

M= =0.754W~0%, (4)
If we use the growth equation (3) to eliminate W from (4),
the following results:

- M = 3(1—5029), (5)

For an arbitrary exponent ¢ in equation (1), we have in
general

M =—S"[1—8"]. 6)
l—¢

Notice that this argument (equations 3 and 4) also gives the
known +0.25 scaling of age at maturity (a) and mortality
(M) with adult body size (Harvey et al. 1989).
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APPENDIX 2

Table 1. Data on a- M, and & for 23 species of mammals
(The adult mortality rate (M) and age at first reproduction
() (from estimated age at independence) were obtained
from Millar & Zammuto (1983). The ratio of mass at
weaning to adult mass (4) was obtained from the sources
listed below.)

species a*M & source for §

Castor canadensis  1.13 0.25 Aleksiuk & Cowan (1969)
Sciurus carolinensis  0.52 0.29 Horwich (1972)

Spermophilus 0.78 0.28 Slade & Balph (1974)
armatus®

S. beldingi 0.75 0.30 Morton & Tung (1971)
S. lateralis 0.76 0.37 Millar (1977)

S. parryi 0.79 0.31 Armitage (1981)
Tamuas striatus 0.86 0.30 Wishner (1982)
Tamiascurus 0.44 0.32 Millar (1977)

hudsonicus

Ochotona princeps  0.52 0.42 Millar (1977)

Sylvilagus floridanus 1.45 0.13 Millar (1977)

Lutra canadensis 0.82 0.17 Mason & Macdonald (1986)
Lynx rufus 0.73 0.27 Crowe (1975)

Mephitis mephitis  0.65 0.34 Casey & Webster (1975)
Taxidea taxus 0.49 0.33 Neal (1986)

Equus burchell: 0.42 0.63 Wackernagel (1965)
Aepyceros melampus 0.36 0.43 Howells & Hanks (1975)
Cervus elaphus 1.13 0.37 Clutton-Brock et al. (1982)

Connochaetes 0.52 0.51 Talbot & Talbot (1963)
taurinus

Kobus defassa 0.27 0.41 Spinage (1982)

Ouis canadensis 0.72 0.39 Hansen & Deming (1980)

Sus scrofa 1.26 0.19 Myrcha & Jezierski (1972)

Syncerus caffer 0.69 0.37 Sinclair (1977)
Loxodonta africana 0.75 0.25 Laws (1966)

* Averaging the four values for the Spermophilus spp did not
significantly affect the results of the analysis shown in the
text.
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R.J. H. BeverToN (Montana, Old Roman Road, Langstone,
Gwent NP62JU, U.K.). It is intriguing to see how Professor
Charnov has been able to extend the early explorations by
Holt and myself into dimensionless indices of life-history
characteristics to a wide range of animal groups. Perhaps I
could add two comments as a postscript. One concerns
Professor Stearn’s question (not printed) about the reality of
the results. It is true that there is strong covariation in certain
of the underlying parameters and it would certainly be
unwise, for example, to attempt to apply detailed statistical
tests of linearity to some of the relations. Nevertheless, the
broad patterns of the basic ratios which Professor Charnov is
comparing —such as that between age at maturity and
longevity — are not artefacts; and his finding that they take
clearly different characteristic values for the major animal
groups — fish, reptiles, birds and mammals — opens up further
rewarding avenues of study.

My other comment concerns the variation of these ratios
within the environmental range of one species. The North
American fish Stizostedion vitreum (walleye) provides a good
example. At the southern end of its range, in Texas and
Colorado, it matures (with difficulty) at 2 years and none live
longer than 4 years, whereas in northern Canada it does not
mature until it is about 7 or 8 years and lives to about 20; but
the size at maturity and the total lifetime fecundity per
maturing recruit is nearly the same throughout the en-
vironmental range. It is as if temperature is determining the
‘rate of living’ — manifest both in the time it takes to reach a
threshold size at maturity and the subsequent lifespan, with
growth and fecundity adjusted to achieve nearly the same
overall ‘fitness’. As John Thorpe pointed out at this meeting,
there is much still to be learned about the physiological basis
of the attainment of maturity.
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